# Evaluation and Integration of Potential Instruments for Subsurface Ocean Worlds Missions

### **Emily Klonicki**

Jet Propulsion Laboratory (JPL) / California Institute of Technology

Image Credit: NASA/NASA JPL

Predecisional information, for planning and discussion only

## NASA Directing Their Search for Life Towards Ocean Worlds

#### **Water in our Solar System**





## Science by Depth: the Surface, Ice Shell, and Ocean



| Location     | Geodynamics                                                                                                                                            | Habitability and<br>Geochemistry                                                                                     | Life Detection                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Near-Surface | Confirm whether diurnal tidal forces cause activity on faults, cracks, and/or through mass wasting.                                                    | Characterize the surface processed material, the depth to which it extends, and determine dominant mixing processes. | Identify potential biomarkers and biosignatures within ice grain boundaries at the cavity wall and within the melt water. |
| Ice Shell    | Confirm whether the ice shell interior is convecting or conductive, as well as the amount of tidal heat dissipation and the presence of partial melts. | Measure the variations in non-ice composition with depth and chemical potentials within the ice.                     | Identify potential biomarkers and biostructures within ice grain boundaries at the cavity wall and within the melt water. |
| Ocean        | Determine the geometry of the interface, and identify any structures.                                                                                  | Measure the ocean composition as a function of horizontal distance and depth from the ocean entry point.             | Identify potential biomarkers, biostructures, and motile organisms within the ocean water.                                |

## Planetary and NASA Heritage for In Situ Instrumentation



Geologic Geodynamic
Activity State

Mixing and Exchange

Composition and Chemistry

Energy For Life

Physio-chemical Regime for Life

Biomaterials

Life

## Geodynamics - Wr

Acoustics
Temperature Sensor
Pressure Sensor
Seismometer
Sonar
Engineering Camera
Magnetometer
Chromatography
Ground Penetrating Radar
Strainmeters

## **Geochemistry**

Water Chemistry Sensors: (Pressure, conductivity, temperature, pH, ion selective electrodes, ORP, turbidity, temperature, dissolved gases, specific metals)

Chromatography

Habitability



turbidity, temperature, dissolved gases, specific metals)

**Broad Band Optical Spectra** 

Chromatography: (CE/LIF or MS, GC/MS, HPLC/LIF

or MS)

**Multispectral Camera** 

Deep UV/ Raman

#### Life Detection

Microscopic Motility Detector

**Cell-Flow Cytometer** 

**Broad Band Optical Spectra** 

Chromatography: (CE/LIF or MS, GC/MS, HPLC/LIF

or MS)

Multispectral Camera

Biosignature detection chip/ Fluorescent biosensors

Deep UV/ Raman

# Long term Instrument Development for Ocean Worlds

Subsurface vehicles enable a new capability to continuously sample the external environment and provide geospatial resolution to instrument data

#### Subsurface Instrument Design Considerations

- 1. Mass, Power, and Volume Requirement
- 2. Mission Duration
- 3. Optimal Storage Conditions
- 4. Operational Lifetime
- 5. Calibration Mechanisms
- 6. Instrument Redundancy
- 7. Sample Preparation
- 8. Environmental Variation
- 9. Instrument Specificity
- 10. Planetary Protection and Contamination Control



### How do we Address Life Detection on Ocean Worlds?





# In designing in situ analytical instruments, several areas need to be addressed

### Mission Implications

#### **Mission Duration and Phases**

- ~12-15 years to Ocean from Launch
  - Penetration through ice shell
  - Exploration of sub-ice ocean

#### **Instrument Requirements**

- Triage verses Sampling Instruments
  - Number of sampling events and data prioritization
- Consumables
  - Solvents, dyes, carrier reagents
  - Component lifetimes
- Calibration
  - Solvent injection
  - Electrical drift



# In designing in situ analytical instruments, several areas need to be addressed

### Sample Preparation



# In designing in situ analytical instruments, several areas need to be addressed

### Operational and Sample Conditions

- Sample: Melt will be aqueous while optical instruments may be outward looking into the ice
  - Varying levels of salinity, pH, and TDS
- Size: Pressure vessel diameter >30 cm and payload bay length will be constrained
- Pressure: High, estimated up to 130-260 MPa
   -Pump-down problem
- Temperature: Varying by depth, liquid during penetration and ocean sampling
- Power: Some fraction of the 50kW reactor power
- Data Volumes: Imaging and continuous sampling will reduce the available data volume for additional instruments.
- Vibrational Constraints: Drilling and water-jetting events



**Artist's Concept** 



### Science Community to Provide Roadmap to Ocean Worlds

















# Thank you to the CHROWE Team

(Cryo-Hydro Robot for Ocean World Exploration)

Brian Clement, Richard Kidd, Marianne Gonzalez, Jean-Pierre Fleurial, David Woerner, Terry Hendricks, and Samuel Howell

Emily.f.klonicki@jpl.nasa.gov



